Fredholm properties of nonlocal differential operators via spectral flow
نویسندگان
چکیده
We establish Fredholm properties for a class of nonlocal differential operators. Using mild convergence and localization conditions on the nonlocal terms, we also show how to compute Fredholm indices via a generalized spectral flow, using crossing numbers of generalized spatial eigenvalues. We illustrate possible applications of the results in a nonlinear and a linear setting. We first prove the existence of small viscous shock waves in nonlocal conservation laws with small spatially localized source terms. We also show how our results can be used to study edge bifurcations in eigenvalue problems using Lyapunov-Schmidt reduction instead of a Gap Lemma.
منابع مشابه
On the Spectral Properties of Degenerate Non-selfadjoint Elliptic systems of Differential Operators
متن کامل
The spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions
Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...
متن کاملOn a Spectral Flow Formula for the Homological Index
Consider a selfadjoint unbounded operator D on a Hilbert space H and a one parameter norm continuous family of selfadjoint bounded operators {A(t) | t ∈ R} that converges in norm to asymptotes A± at ±∞. Then under certain conditions [RoSa95] that include the assumption that the operators {D(t) = D + A(t), t ∈ R} all have discrete spectrum then the spectral flow along the path {D(t)} can be show...
متن کاملAsymptotic distribution of eigenvalues of the elliptic operator system
Since the theory of spectral properties of non-self-accession differential operators on Sobolev spaces is an important field in mathematics, therefore, different techniques are used to study them. In this paper, two types of non-self-accession differential operators on Sobolev spaces are considered and their spectral properties are investigated with two different and new techniques.
متن کاملSpectral flow and winding number in von Neumann algebras
We define a new topology, weaker than the gap topology, on the space of selfadjoint operators affiliated to a semifinite von Neumann algebra and define the real-valued spectral flow for a continuous path of selfadjoint Breuer-Fredholm operators in terms of a generalization of the winding number. We compare our definition with Phillips’ analytical definition. Furthermore we prove the homotopy in...
متن کامل